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Abstract—The appearance of Hopf bifurcation in a microwave
doubler is due to the relative. speed of the recombination delay
of the junction diode with the input RF signal, which results
in a dynamical negative resistance. This is verified here experi-
mentally by using a back-to-back diode structure that quenches
Hopf bifurcation numerically through stability analysis in the
frequency domain.

I. INTRODUCTION

REQUENCY multipliers in junction varactor and
step-recovery diodes are well known for their spurious-
oscillation instabilities [1], [2]. No work has been done
in characterizing and predicting this type of instability. In
addition, there has been no report of a breakdown of the
“spurious oscillation” to chaos. This paper attempts to provide
experimental and numerical verification of chaos observed
in ‘a 5-10 GHz frequency doubler. With the input power
level fixed, the bias level of the junction diode was increased
gradually. At a critical bias level, a mixed product spectrum
was observed - denoting the presence of two frequencies,
input and self-generated. The appearance of a spurious
oscillation” due to a varying parameter is known as the
Hopf bifurcation phenomenon; the parameter itself is referred
to as the ‘“bifurcation” parameter. The magnitude of this
oscillation is low and increases gradually with the bifurcation
parameter; this is a “soft” Hopf bifurcation [3].. Further
increase results suddenly in a secondary Hopf bifurcation,
and the system enters a three-frequency quasiperiodic regime.
The magnitude of all the mixed products suddenly increases;
this is a “hard” Hopf bifurcation [3]. A further increase results
in a chaotic breakdown manifested by a broadband noise
around the spectral lines. These bifurcations occur whenever
the combination’ of the input power level and the bias level
exceeds a certain instantaneous limit. The ‘reason for this
will become apparent below. Here’s a look at the bifurcation
sequence: With a fixed input power level of 16 dBm, primary
bifurcation occurs at a bias level of —2.59 V, followed. by
secondary bifurcation at —1.33 V, and chaos at —0.33 V. The
above path to chaos is classically known as the quasiperiodic
route, where the system undergoes two Hopf bifurcations,
after which chaos becomes likely to occur [4].
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Fig. 1.

A harmonic balance analysis of the frequency doubler.

The observed Hopf bifurcation is primarily due to the
finite recombination lifetime of the minority carriers of the
pn junction diode. When the forward-biased pn junction diode
is suddenly reverse biased, the current continues to flow in
the forward direction because of the recombination time delay
of the minority carriers. Consequently, a dynamical negative
resistance is set up whenever the diode is forward biased.
Since the forward-bias voltage is the sum of the bias and the
input source voltage, the two bifurcation parameters essentially
behave as one. Hence, through either parametric variation
chaos can be reached.

The negative resistance effect of a junction diode has been
studied earlier in the 1960°s under the topic of parametric
amplification [5]. However, this parametric effect is different
from the work discussed here in the sense that a pump
frequency and a small-amplitude signal frequency are simulta-
neously applied to make the device behave like a time-varying
linear capacitance at the signal frequency. When the current
is permitted to exist at the idler frequency w, — w,, further
mixing occurs and results in a power transfer from the pump
signal to the RF signal, which is interpreted as an equivalent
negative resistance.

II. FORMULATION

The analysis of the doubler is based on the piecewise
harmonic balance method [6]. The stability analysis follows
the procedure in [7], but the formulation given here is believed
simpler and still applicable to practical microwave circuits.
Without loss of generality, a representative nonlinear device
can be modeled as a parallel combination of nonlinear resistor
and a nonlinear capacitor; this model happens to be adequate
for characterizing diodes. The Y -parameters of the linear por-
tion of the circuit is obtained using the microwave simulator
MDS [8]. The harmonic balance equation at the junction of
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the linear/nonlinear network in Fig. 1 is given by Kirchoff’s
circuital law

E(V) = Ig,k + I+ Y(kwo) - Vi 0))

where F is the error function that needs to be reduced to zero
through some iterative mechanism.

The diagram in Fig. 1 depicts the frequency doubler network
separated piecewise into linear and nonlinear network. The
structure is that of a typical doubler, with a low-pass filter
(LPF) at 5 GHz input signal and a band-pass filter (BPF) at
10 GHz, each filter presenting a high impedance at the other
frequency looking in from the diode. The tuning elements and
bias circuit is not shown in the diagram for clarity.

In order to extract local stability behavior of the system, we
need to perturb the solution Vj, in amplitude and frequency.
The perturbed equation is in the form

Z Z Js‘kfl . AVk =0 (2)

k 1

where
Js k-1 = [Gro1+ (5 + Qg 1)Cro1 + Y (1 — j5)] (3)

is defined as the Stability Jacobian, Jg, which becomes the
ordinary Jacobian of (1) for s = O (unperturbed state) and
is used in the Newton-Raphson method for solving (1). This
Jacobian consists of the nonlinear conductance matrix, the
nonlinear capacitance matrix, and the admittance matrix of
the linear circuit. Following the Nyquist approach in [7], the
determinant of (4) is modified by a factor of exp (—ws/w,)
to remove the singularity at infinity and plotted only in the
frequency range [0, w,/2] to extract the stability information.
The Nyquist criterion for instability is

N, = Z; = stable if and only if N, = 0 @

where N, is the total number of encirclements of the origin
and Z is the number of unstable zeros on the right-hand plane
(RHP) of the s-plane.

The bifurcation parameter, for example the input power or
the bias level, is stepped gradually up from a low level. At each
solution point determined by the harmonic balance analysis,
the local stability at that point is found by using the Nyquist
approach described above. In this way, a large signal stability
analysis is carried out.

In the following sections, experimental and numerical ver-
ification of the onset of Hopf bifurcation in the doubler is
described.

III. EXPERIMENTAL VERIFICATION

The chaotic doubler circuit was slightly modified by incor-
porating an additional diode in a back-to-back series connected
fashion, as depicted in Fig. 2. The choice of the anode or
cathode of the diodes facing outward in the back-to-back
structure is not relevant to the experiment and will give similar
results. In this structure one of the diodes stay reverse biased
all the time. Because of the series connection, the structure
is never in the forward-biased mode. Consequently, there
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Fig. 2. A back-to-back two-diode nonbifurcating frequency doubler circuit.
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Fig. 3. The C-V curves of a positive polarity diode, negative polarity diode,
and a series combination of two back-to-back diodes.

is no recombination time delay effect, and hence spurious
oscillations are not observed.

The back-to-back doubler still provides a conversion, but not
as good as a single-diode doubler. The conversion results from
the nonlinearity of the charge or capacitance of the two diodes.
The C-V curves of the two diodes. one forward biased, the
other reverse biased, and their combined effect are shown in
Fig. 3. At the built-in potential, the capacitance of the forward-
biased diode approaches infinity due to the closure of the
depletion region. The combined series capacitance becomes
essentially that of the reverse-biased diode. At 0 V, the total
capacitance is half that of a single diode. As a result, the
variation of capacitance over a wide range of input voltage is
much smaller, which makes the frequency conversion weaker.
Therefore, even though there are no Hopf bifurcations, the
back-to-back structure may not be an optimum choice for
frequency multiplication. The conversion can be improved by
biasing away from zero volts because of the C-V asymmetry
presented to the input signal.

IV. NUMERICAL VERIFICATION

The primary Hopf bifurcation can be predicted based on a
single-tone stability analysis as described in Section II. The
experimental value is off by about 1-1.5 dB in terms of the
input RF power; this is adequate accuracy considering that
quasistatic models were used to model the linear part of the
circuit [8]. To determine if the cause of Hopf bifurcation is due
to the recombination time delay, the diffusion capacitance was
modeled explicitly in terms of the minority carrier lifetime, 7,
of the diode as

dI(v)

dt
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where the current I(v) is given by the familiar Shockley
diode equation. According to the manufacturer specifications
of the diode (Alpha DVA6735), 7 is about 10 ns. With this
value the predicted bifurcation point is about 1-1.5 dB off
from the experimental result, where the bifurcation parameter
used is the input power level. This discrepancy is acceptable
since quasistatic models used in simulating the linear part
of the circuit have limited accuracy bandwidth. When this
delay is made negligibly small, for example 7 = 6 ps, no
numerical Hopf bifurcation appears. This is because very
little charge is stored in 3/100th period of the input signal,
T(f = 5 GHz). When the delay is made bigger to about
3/10 T, then Hopf bifurcation registers, although at a higher
bifurcation parameter value. As the delay is made closer
to its norm of 10 ns the occurrence of Hopf bifurcations
registers closer to the experimentally observed value. No
change in the Hopf point was observed if the delay was
changed by a factor of 10 about its norm; hence, the predicted
Hopf point is quite stable within manufacturer tolerances of
the delay. Thus, the dependence of Hopf bifurcation on the
minority carrier lifetime of the junction diode is clear from the
above numerical results. Furthermore, this single-tone stability
analysis can still be used for further increment of input power
or bias level to detect a secondary Hopf bifurcation, even
after the initial one. This is valid only in this case, since
it is a priori known experimentally that the spurious tones
were about 40 dB below the 10-GHz spectral output and,
therefore, can be neglected; hence, a multitone analysis is not
required. Numerically and experimentally, a secondary Hopf
bifurcation occurs within 1.2-dB increase in the input power
level (bifurcation parameter) showing that the system does
bifurcate into a three-frequency quasiperiodic regime. In [4],
it has been theoretically and experimentally proven that when

a system enters a three-frequency quasiperiodic regime it has
the potential to disintegrate to chaos. In chaos literature, it has
been numerically shown to occur for three-order autonomous
circuits [9], but to prove its occurrence in complex circuits
such as the frequency doubler is difficult and has not yet
been done. Hence, the best we have numerically achieved is to
determine when the system goes into a three-frequency regime.

V. CONCLUSION

In this paper, we have verified that the onset of Hopf
bifurcation is primarily due to the dynamical negative resis-
tance manifested by the minority carrier lifetime of the pn
junction diode. The quasiperiodic path to chaos has also been
numerically verified for this doubler through a single tone
stability analysis.
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